Takeaways from The NSTA Convention – Part 1
 The National Science Teachers Association annual convention is a 4-day exhibition of the latest and greatest in science teaching. From workshops and presentations (the details of which fill a phonebook-sized guide!) to an exhibit hall packed with vendors and exhibitors, I always find the convention to be a wealth of information and ideas. In this series of posts, I’ll be sharing my favorite takeaways from the 2013 event.
The National Science Teachers Association annual convention is a 4-day exhibition of the latest and greatest in science teaching. From workshops and presentations (the details of which fill a phonebook-sized guide!) to an exhibit hall packed with vendors and exhibitors, I always find the convention to be a wealth of information and ideas. In this series of posts, I’ll be sharing my favorite takeaways from the 2013 event.

At the tinkering and making events I’ve attended over the past several years, I’ve heard countless people share how they’ve used Arduino both in their own projects and in the classroom. Arduino is an open-source micro-controller (think small computer chip with sensors and LEDs) that are programmable with a C++ esque language. At a workshop offered by exhibitor SparkFun Electronics, I had my first opportunity to play in Arduino. Within minutes, I was programming an RGB LED to blink in different colors in response to different light levels detected by a built-in light sensor on the board. I believe the incredible potential for Arduino in the classroom lies in its being easy to get started using while still having incredible potential for advanced projects. As with any computer programming implementation in the classroom, SparkFun and Arduino offer opportunities for students to develop critical thinking and problem solving skills.
 While incredibly easy to pick up, the Arduino programming language may challenging for younger students – I’d readily teach it to my 6th grade students but I am concerned that the syntax might not be accessible to the 3rd and 4th grade students I’ll be teaching in a maker camp this summer. Enter the SparkFun PicoBoard – an external board and set of sensors that interface with Scratch, the visual programming software developed by MIT. Instead of having to write code, programmers drag programming blocks into chains to create and control animated “sprites.” For example, a student might create an animated cat that closes its eyes when lights in the room are too bright or that runs off the screen when it hears a loud sound (light and sound are sensed by the PicoBoard – readings are then used to control the on-screen animation). I’d recommend starting by playing around with the free Scratch software (version 2.0 to be released soon!) and then adding a PicoBoard when you and your are ready for more complicated programming and animating.
While incredibly easy to pick up, the Arduino programming language may challenging for younger students – I’d readily teach it to my 6th grade students but I am concerned that the syntax might not be accessible to the 3rd and 4th grade students I’ll be teaching in a maker camp this summer. Enter the SparkFun PicoBoard – an external board and set of sensors that interface with Scratch, the visual programming software developed by MIT. Instead of having to write code, programmers drag programming blocks into chains to create and control animated “sprites.” For example, a student might create an animated cat that closes its eyes when lights in the room are too bright or that runs off the screen when it hears a loud sound (light and sound are sensed by the PicoBoard – readings are then used to control the on-screen animation). I’d recommend starting by playing around with the free Scratch software (version 2.0 to be released soon!) and then adding a PicoBoard when you and your are ready for more complicated programming and animating.
More updates from the NSTA Convention to follow. Stay tuned!
Full disclosure: I received a free SparkFun ProtoSnap as an attendee of their NSTA Workshop. I was under no obligation to use or review this product and receive no compensation from SparkFun for this posting or for any of the links included in this blog.”
 I’ve just wrapped up my second day at the National Science Teachers Convention in San Antonio, TX. The buzz of the conference has been the Next Generation Science Standards (NGSS), which were just released this week. Developed by scientific education organizations in partnership with 26 states, the standards seed to define 21st century science education.  The NGSS establish learning expectations for students that integrate three important foci—science and engineering practices, disciplinary core ideas, and crosscutting concepts—outlining science and engineering concepts from kindergarten through 12th grade. The new standards are available at
I’ve just wrapped up my second day at the National Science Teachers Convention in San Antonio, TX. The buzz of the conference has been the Next Generation Science Standards (NGSS), which were just released this week. Developed by scientific education organizations in partnership with 26 states, the standards seed to define 21st century science education.  The NGSS establish learning expectations for students that integrate three important foci—science and engineering practices, disciplinary core ideas, and crosscutting concepts—outlining science and engineering concepts from kindergarten through 12th grade. The new standards are available at  Today, over 2,000 teachers from across Northern California came together at Head Royce School in Oakland, CA for the California Association of Independent Schools’ Annual Conference. It was wonderful catching up with former colleagues as we perused exhibits, attended workshops, and enjoyed lunch outside on an unseasonably warm March afternoon.
Today, over 2,000 teachers from across Northern California came together at Head Royce School in Oakland, CA for the California Association of Independent Schools’ Annual Conference. It was wonderful catching up with former colleagues as we perused exhibits, attended workshops, and enjoyed lunch outside on an unseasonably warm March afternoon. After a restful summer (which included a move to a new school!), classes are finally back in session! I always begin the year with a set of activities that challenge students to practice science process skills (observing, recording data, asking questions, etc.). My approach includes a series of quick “discrepant event” demos that captivate (and baffle) my students. From trying to figure out why two ice cubes melt at dramatically different rates to brainstorming explanations for how a sealed opaque balloon suddenly starts self-inflating, these demos engage students, assess students’ science skills, and emphasize the processes and habits that scientists use to inquire about the world around them.
After a restful summer (which included a move to a new school!), classes are finally back in session! I always begin the year with a set of activities that challenge students to practice science process skills (observing, recording data, asking questions, etc.). My approach includes a series of quick “discrepant event” demos that captivate (and baffle) my students. From trying to figure out why two ice cubes melt at dramatically different rates to brainstorming explanations for how a sealed opaque balloon suddenly starts self-inflating, these demos engage students, assess students’ science skills, and emphasize the processes and habits that scientists use to inquire about the world around them.

 Two-Balloon Surprise
Two-Balloon Surprise Over twenty years later, the Rube Goldberg project has become an integral part of my teaching, serving as a culminating assessment for my 8th grade physics unit. Students apply their understanding of Newtonian physics to create 8 or more step machines that include 5 or more different simple machines. After presenting their finished machines to their families and younger students, my 8th graders engage in a detailed written analysis of their machines and a reflection on the engineering process. I find this project to be particularly powerful for how it pushes students to not only apply content knowledge but also to think critically, problem solve, and work collaboratively.
Over twenty years later, the Rube Goldberg project has become an integral part of my teaching, serving as a culminating assessment for my 8th grade physics unit. Students apply their understanding of Newtonian physics to create 8 or more step machines that include 5 or more different simple machines. After presenting their finished machines to their families and younger students, my 8th graders engage in a detailed written analysis of their machines and a reflection on the engineering process. I find this project to be particularly powerful for how it pushes students to not only apply content knowledge but also to think critically, problem solve, and work collaboratively.